Question.
ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that
(i) D is the mid-point of AC
(ii) $\mathrm{MD} \perp \mathrm{AC}$
(iii) $\mathrm{CM}=\mathrm{MA}=\frac{1}{2} \mathrm{AB}$
(i) D is the mid-point of AC
(ii) $\mathrm{MD} \perp \mathrm{AC}$
(iii) $\mathrm{CM}=\mathrm{MA}=\frac{1}{2} \mathrm{AB}$
Solution:
(i) $\ln \triangle \mathrm{ABC}$,
It is given that $M$ is the mid-point of $A B$ and $M D \| B C$.
Therefore, $D$ is the mid-point of $A C$. (Converse of mid-point theorem)
(ii) $A s D M \| C B$ and $A C$ is a transversal line for them, therefore,
$\angle \mathrm{MDC}+\angle \mathrm{DCB}=180^{\circ}$ (Co-interior angles)
$\angle \mathrm{MDC}+90^{\circ}=180^{\circ}$
$\angle \mathrm{MDC}=90^{\circ}$
$\therefore \mathrm{MD} \perp \mathrm{AC}$
(iii) Join $\mathrm{MC}$.
In $\triangle \mathrm{AMD}$ and $\triangle \mathrm{CMD}$,
$\mathrm{AD}=\mathrm{CD}(\mathrm{D}$ is the mid-point of side $\mathrm{AC})$
$\angle A D M=\angle C D M\left(\right.$ Each $\left.90^{\circ}\right)$
DM = DM (Common)
$\therefore \triangle \mathrm{AMD} \cong \triangle \mathrm{CMD}($ By SAS congruence rule $)$
Therefore, $\mathrm{AM}=\mathrm{CM}(\mathrm{By} \mathrm{CPCT})$
However, $A M=\frac{1}{2} A B$ ( $M$ is the mid-point of $A B$ )
Therefore, it can be said that
$\mathrm{CM}=\mathrm{AM}=\frac{1}{2} \mathrm{AB}$
(i) $\ln \triangle \mathrm{ABC}$,
It is given that $M$ is the mid-point of $A B$ and $M D \| B C$.
Therefore, $D$ is the mid-point of $A C$. (Converse of mid-point theorem)
(ii) $A s D M \| C B$ and $A C$ is a transversal line for them, therefore,
$\angle \mathrm{MDC}+\angle \mathrm{DCB}=180^{\circ}$ (Co-interior angles)
$\angle \mathrm{MDC}+90^{\circ}=180^{\circ}$
$\angle \mathrm{MDC}=90^{\circ}$
$\therefore \mathrm{MD} \perp \mathrm{AC}$
(iii) Join $\mathrm{MC}$.
In $\triangle \mathrm{AMD}$ and $\triangle \mathrm{CMD}$,
$\mathrm{AD}=\mathrm{CD}(\mathrm{D}$ is the mid-point of side $\mathrm{AC})$
$\angle A D M=\angle C D M\left(\right.$ Each $\left.90^{\circ}\right)$
DM = DM (Common)
$\therefore \triangle \mathrm{AMD} \cong \triangle \mathrm{CMD}($ By SAS congruence rule $)$
Therefore, $\mathrm{AM}=\mathrm{CM}(\mathrm{By} \mathrm{CPCT})$
However, $A M=\frac{1}{2} A B$ ( $M$ is the mid-point of $A B$ )
Therefore, it can be said that
$\mathrm{CM}=\mathrm{AM}=\frac{1}{2} \mathrm{AB}$