ABC is a right triangle with AB = AC. If bisector of ∠A meets BC at D,then prove that BC = 2AD.
Given $\triangle A B C$ is a right angled triangle with $A B=A C, A D$ is the bisector of $\angle A$.
To prove $B C=2 A D$ [given]
Proof $\ln \triangle A B C$, $A B=A C$ [given]
$\Rightarrow$ $\angle C=\angle B$ $\ldots(1)$
[angles opposite to equal sides are equal]
Now, in right angled $\triangle A B C, \angle A+\angle B+\angle C=180^{\circ}$
[by angle sum property of a triangle in $180^{\circ}$ ]
$\Rightarrow \quad 90^{\circ}+\angle B+\angle B=180^{\circ}$ [from Eq. (i)]
$\Rightarrow \quad 2 \angle B=90^{\circ}$
$\Rightarrow \quad \angle B=45^{\circ}$
$\Rightarrow \quad \angle B=\angle C=45^{\circ}$
or $\quad \angle 3=\angle 4=45^{\circ}$
Now, $\angle 1=\angle 2=45^{\circ}$ $[\because A D$ is bisector of $\angle A]$
$\therefore \quad \angle 1=\angle 3 \angle 2=\angle 4$
$\Rightarrow \quad B D=A D, D C=A D$ ......(ii)
[sides opposite to equal angles are equal]
Hence, $B C=B D+C D=A D+A D \Rightarrow B C=2 A D$ [from Eq. (ii)]
Hence proved.