ΔABC is a right triangle right angled at A such that AB = AC and bisector of ∠C intersects the side AB at D.
ΔABC is a right triangle right angled at A such that AB = AC and bisector of ∠C intersects the side AB at D. Prove that AC + AD = BC.
Given: In right triangle ΔABC, ∠BAC = 90°, AB = AC and ∠ACD = ∠BCD.
To prove: AC + AD = BC
Proof:
Let AB = AC = x and AD = y.
In ΔABC,
$B C^{2}=A B^{2}+A C^{2}$
$\Rightarrow B C^{2}=x^{2}+x^{2}$
$\Rightarrow B C^{2}=2 x^{2}$
$\Rightarrow B C=\sqrt{2 x^{2}}$
$\Rightarrow B C=x \sqrt{2}$
Now,
$\frac{B D}{A D}=\frac{B C}{A C}$ (An angle bisector of an angle of a triangle divides the opposite side in two segments that are proportional to the other two sides of the triangle.)
$\Rightarrow \frac{x-y}{y}=\frac{x \sqrt{2}}{x}$
$\Rightarrow \frac{x}{y}-\frac{y}{y}=\sqrt{2}$
$\Rightarrow \frac{x}{y}-1=\sqrt{2}$
$\Rightarrow \frac{x}{y}=(\sqrt{2}+1)$
$\Rightarrow y=\frac{x}{(\sqrt{2}+1)}$
$\Rightarrow y=\frac{x}{(\sqrt{2}+1)} \times \frac{(\sqrt{2}-1)}{(\sqrt{2}-1)}$
$\Rightarrow y=\frac{x(\sqrt{2}-1)}{(\sqrt{2})^{2}-1^{2}}$
$\Rightarrow y=\frac{x \sqrt{2}-x}{2-1}$
$\Rightarrow y=x \sqrt{2}-x$
$\Rightarrow x+y=x \sqrt{2}$
Hence, AC + AD = BC.