$\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$. If $\mathrm{BC}=3 \mathrm{~cm}, \mathrm{EF}=4 \mathrm{~cm}$ and $\operatorname{ar}(\triangle \mathrm{ABC})=54 \mathrm{~cm}^{2}$, then $\operatorname{ar}(\triangle \mathrm{DEF})=$
(a) $108 \mathrm{~cm}^{2}$
(b) $96 \mathrm{~cm}^{2}$
(c) $48 \mathrm{~cm}^{2}$
(d) $100 \mathrm{~cm}^{2}$
Given: In Δ ABC and Δ DEF
$\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\operatorname{Ar}(\triangle \mathrm{ABC})=54 \mathrm{~cm}^{2}$
$B C=3 \mathrm{~cm}$ and $E F=4 \mathrm{~cm}$
To find: Ar(Δ DEF)
We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides.
$\frac{\operatorname{Ar}(\Delta \mathrm{ABC})}{\operatorname{Ar}(\Delta \mathrm{DEF})}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}$
$\frac{54}{\operatorname{Ar}(\triangle \mathrm{DEF})}=\frac{3^{2}}{4^{2}}$
$\frac{54}{\operatorname{Ar}(\Delta \mathrm{DEF})}=\frac{9}{16}$
$\operatorname{Ar}(\Delta \mathrm{DEF})=\frac{16 \times 54}{9}$
$\operatorname{Ar}(\triangle \mathrm{DEF})=96 \mathrm{~cm}^{2}$
Hence the correct answer is (b)