A wire is bent to form a square enclosing an area of 484 cm2.Using the same wire, a circle is formed. Find the area of the circle.
Area of the circle = 484 cm2
Area of the square $=\operatorname{Side}^{2}$
$\Rightarrow 484=$ Side $^{2}$
$\Rightarrow 22^{2}=$ Side $^{2}$
$\Rightarrow$ Side $=22 \mathrm{~cm}$
Perimeter of the square $=4 \times$ Side
Perimeter of the square $=4 \times 22$
$=88 \mathrm{~cm}$
Length of the wire = 88 cm
Circumference of the circle = Length of the wire = 88 cm
Now, let the radius of the circle be r cm.
Thus, we have:
$2 \pi \mathrm{r}=88$
$\Rightarrow 2 \times \frac{22}{7} \times \mathrm{r}=88$
$\Rightarrow \mathrm{r}=14$
Area of the circle $=\pi \mathrm{r}^{2}$
$=\frac{22}{7} \times 14 \times 14$
$=616 \mathrm{~cm}^{2}$
Thus, the area enclosed by the circle is 616 cm2.