A well of diameter 3 m ad 14 m deep is dug. The earth, taken out of it, has been evenly spread all around it in the shape of a circular ring of width 4 m to form an embankment. Find the height of the embankment.
Given a well with diameter 3 m and height 14 m. The earth dug out from well is used to make a circular embankment of 4m width.
We have to find the height of the embankment.
Let R be the radius of well
Let H be the height of well
Let r be the radius of embankment
Let h be the height of embankment
$R=\frac{1}{2} \times$ diameter of well
$=\frac{1}{2} \times 3$
$=1.5 \mathrm{~m}$
$H=14 \mathrm{~m}$
Width of the circular embankment $=4 \mathrm{~m}$
Radius of the circular embankment $r=($ Width of embankment $+R) \mathrm{m}$
$=(4+1.5) \mathrm{m}$
$=5.5 \mathrm{~m}$
Volume of well (Earth Dug) $=\pi R^{2} H$
$=\pi \times\left[(1.5)^{2}\right] \times 14$
Volume of the circular embankment $=\pi r^{2} h$
$=\pi \times\left[(5.5)^{2}-(1.5)^{2}\right] \times h$
According to the question
Volume of the earth dug = Volume of the circular embankment
Therefore,
$\pi \times(1.5)^{2} \times 14=\pi \times\left[(5.5)^{2}-(1.5)^{2}\right] \times h$
$\frac{3}{2} \times \frac{3}{2} \times 14=[(5.5-1.5)(5.5+1.5)] \times h$
$\frac{9}{4} \times 14=4 \times 7 \times h$
$h=\frac{9 \times 14}{4 \times 4 \times 7}$
$h=\frac{9}{8} \mathrm{~m}$