A value of $x$ satisfying $\cos x+\sqrt{3} \sin x=2$ is
(a) $\frac{5 \pi}{3}$
(b) $\frac{4 \pi}{3}$
(c) $\frac{2 \pi}{3}$
(d) $\frac{\pi}{3}$
(d) $\frac{\pi}{3}$
Given equation:
$\cos x+\sqrt{3} \sin x=2 \quad \ldots$ (i)
Thus, the equation is of the form $a \cos x+b \sin x=c$, where $a=1, b=\sqrt{3}$ and $c=3$.
Let:
$a=r \cos \alpha$ and $b=r \sin \alpha$
$1=r \cos \alpha$ and $\sqrt{3}=r \sin \alpha$
$\Rightarrow r=\sqrt{a^{2}+b^{2}}=\sqrt{(\sqrt{3})^{2}+1^{2}}=2$ and
$\tan \alpha=\frac{b}{a} \Rightarrow \tan \alpha=\frac{\sqrt{3}}{1} \Rightarrow \tan \alpha=\tan \frac{\pi}{3} \Rightarrow \alpha=\frac{\pi}{3}$
On putting $a=1=r \cos \alpha$ and $b=\sqrt{3}=r \sin \alpha$ in equation (i), we get:
$r \cos \alpha \cos x+r \sin \alpha \sin x=2$
$\Rightarrow r \cos (x-\alpha)=2$
$\Rightarrow r \cos \left(x-\frac{\pi}{3}\right)=2$
$\Rightarrow 2 \cos \left(x-\frac{\pi}{3}\right)=2$
$\Rightarrow \cos \left(x-\frac{\pi}{3}\right)=1$
$\Rightarrow \cos \left(x-\frac{\pi}{3}\right)=\cos 0$
$\Rightarrow x-\frac{\pi}{3}=0$
$\Rightarrow x=\frac{\pi}{3}$