A two-digit number is such that the product of the digits is 16. When 54 is subtracted from the number, the digits are interchanged. Find the number.
Let the tens digit be $x$ then the unit digits $=\frac{16}{x}$
Therefore, number $=\left(10 x+\frac{16}{x}\right)$
And number obtained by interchanging the digits $=\left(10 \times \frac{16}{x}+x\right)$
Then according to question
$\left(10 x+\frac{16}{x}\right)-\left(10 \times \frac{16}{x}+x\right)=54$
$\left(10 x+\frac{16}{x}\right)-\left(10 \times \frac{16}{x}+x\right)=54$
$\frac{\left(10 x^{2}+16\right)-\left(160+x^{2}\right)}{x}=54$
$\frac{10 x^{2}+16-160-x^{2}}{x}=54$
$\frac{9 x^{2}-144}{x}=54$
$9 x^{2}-144=54 x$
$9 x^{2}-54 x-144=0$
$9\left(x^{2}-6 x-16\right)=0$
$x^{2}-6 x-16=0$
$x^{2}-8 x+2 x-16=0$
$x(x-8)+2(x-8)=0$
$(x-8)(x+2)=0$
$(x-8)=0$
$x=8$
Or
$(x+2)=0$
$x=-2$
So the digit can never be negative.
Therefore,
When $x=8$ then the unit digits
$=\frac{16}{x}$
$=\frac{16}{8} .$
$=2$
And the number is
$=\left(10 x+\frac{16}{x}\right)$
$=(10 \times 8+2)$
$=82$
Thus, the required number be 82