A two-digit number is such that the product of digit is 12. When 36 is added to the number the digits interchange their places. Determine the number.
Let the tens digit be $x$ then, the unit digits $=\frac{12}{x}$
Therefore, number $=\left(10 x+\frac{12}{x}\right)$
And number obtained by interchanging the digits $=\left(10 \times \frac{12}{x}+x\right)$
Then according to question
$\left(10 x+\frac{12}{x}\right)+36=\left(10 \times \frac{12}{x}+x\right)$
$\left(10 x+\frac{12}{x}\right)+36=\left(\frac{120}{x}+x\right)$
$\left(10 x+\frac{12}{x}\right)-\left(\frac{120}{x}+x\right)+36=0$
$\frac{\left(10 x^{2}+12\right)-\left(120+x^{2}\right)+36 x}{x}=0$
$10 x^{2}+12-120-x^{2}+36 x=0$
$9\left(x^{2}+4 x-12\right)=0$
$x^{2}+4 x-12=0$
$x^{2}-2 x+6 x-12=0$
$x(x-2)+6(x-2)=0$
$(x-2)(x+6)=0$
$(x-2)=0$
$x=2$
Or
$(x+6)=0$
$x=-6$
So, the digit can never be negative.
Therefore,
When $x=2$ then the unit digits
$=\frac{12}{x}$
$=\frac{12}{2} .$
$=6$
And number
$=\left(10 x+\frac{12}{x}\right)$
$=(10 \times 2+6)$
$=26$
Thus, the required number be 26