Question:
A two digit number is 4 times the sum of its digits and twice the product of its digits. Find the number.
Solution:
Let the require digit be $=(10 x+y)$
Then according to question
$(10 x+y)=4(x+y)$
$(10 x+y)=4 x+4 y$
$10 x+y-4 x-4 y=0$
$6 x-3 y=0$
$2 x-y=0$
$2 x=y \ldots \ldots(1)$
And, $(10 x+y)=2 x y$......(2)
Now putting the value of y in equation (2) from (1)
$(10 x+2 x)=2 x \times 2 x$
$4 x^{2}-12 x=0$
$4 x(x-3)=0$
$x(x-3)=0$
So, either
$x=0$
Or
$(x-3)=0$
$x=3$
So, the digit can never be negative.
When $x=3$ then
$y=2 x$
$=2 \times 3$
$=6$
Therefore, number
$=10 x+y$
$=10 \times 3+6$
$=36$
Thus, the required number be 36