A TV tower stands vertically on a bank of canal. From a point on other bank directly opposite the tower, the angle of elevation of the top of the tower is 60°.
A TV tower stands vertically on a bank of canal. From a point on other bank directly opposite the tower, the angle of elevation of the top of the tower is 60°. From another point 20 m away from this point on the line joining this point to the foot of the tower, the angle of elevation of the top of the tower is 30°. Find the height of the tower and the width of the canal.
Let PQ=h m be the height of the TV tower and BQ=x m be the width of the canal.
We have,
$\mathrm{AB}=20 \mathrm{~m}, \angle \mathrm{PAQ}=30^{\circ}, \angle \mathrm{PBQ}=60^{\circ}, \mathrm{BQ}=x$ and $\mathrm{PQ}=h$
In $\Delta$ PBQ,
$\tan 60^{\circ}=\frac{\mathrm{PQ}}{\mathrm{BQ}}$
$\Rightarrow \sqrt{3}=\frac{h}{x}$
$\Rightarrow h=x \sqrt{3} \quad \ldots \ldots(\mathrm{i})$
Again, in $\triangle \mathrm{APQ}$
$\tan 30^{\circ}=\frac{\mathrm{PQ}}{\mathrm{AQ}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{h}}{\mathrm{AB}+\mathrm{BQ}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{x \sqrt{3}}{20+x} \quad[\operatorname{Using}(\mathrm{i})]$
$\Rightarrow 3 x=20+x$
$\Rightarrow 3 x-x=20$
$\Rightarrow 2 x=20$
$\Rightarrow x=\frac{20}{2}$
$\Rightarrow x=10 \mathrm{~m}$
Substituting $x=10$ in (i), we get
$h=10 \sqrt{3} \mathrm{~m}$
So, the height of the TV tower is $10 \sqrt{3} \mathrm{~m}$ and the width of the canal is $10 \mathrm{~m}$.