A toy is in the form of a cone of radius 3.5 cm mounted on a hemisphere of same radius. The total height of the toy is 15.5 cm. find the total surface area of the toy
Let r and h be the radius of cone, hemisphere and height of cone
$\therefore \mathrm{h}=(15.5-3.5) \mathrm{cm}$
$=12.0 \mathrm{~cm}$
Also $\ell^{2}=\mathrm{h}^{2}+\mathrm{r}^{2}$
$=12^{2}+(3.5)^{2}$
$=156.25$
$\therefore \ell=12.5 \mathrm{~cm}$
Curved surface area of the conical part $=\pi r \ell$
Curved surface area of the hemispherical part $=2 \pi \mathrm{r}^{2}$
Total surface area of the toy $=\pi \mathrm{r} \ell+2 \pi \mathrm{r}^{2}$
$=\pi \mathrm{r}(\ell+2 \mathrm{r})$
$=\frac{\mathbf{2 2}}{\mathbf{7}} \times \frac{\mathbf{3 5}}{\mathbf{1 0}}(12.5+2 \times 3.5) \mathrm{cm}^{2}$
$=11 \times(12.5+7) \mathrm{cm}^{2}=11 \times 19.5 \mathrm{~cm}^{2}$
$=214.5 \mathrm{~cm}^{2}$