A tower subtends an angle of 30° at a point on the same level as its foot. At a second point h metres above the first, the depression of the foot of the tower is 60°. The height of the tower is
(a) $\frac{h}{2} m$
(b) $\sqrt{3 h} m$
(c) $\frac{h}{3} m$
(d) $\frac{h}{\sqrt{3}} m$
Let AB be the tower and C is a point on the same level as its foot such that ∠ACB = 30°
The given situation can be represented as,
Here D is a point h m above the point C.
In ΔBCD,
$\Rightarrow \tan B=\frac{C D}{C B}$
$\Rightarrow \tan 60^{\circ}=\frac{h}{C B}$
$\Rightarrow \sqrt{3}=\frac{h}{C B}$
$\Rightarrow C B=\frac{h}{\sqrt{3}}$
Again in triangle ABC,
$\tan C=\frac{A B}{C B}$
$\Rightarrow \tan 30^{\circ}=\frac{A B}{\left(\frac{h}{\sqrt{3}}\right)} \quad[$ Using (1) $]$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{A B}{\left(\frac{h}{\sqrt{3}}\right)}$
$\Rightarrow A B=\frac{h}{3}$
Hence the correct option is $c$.