A total amount of ₹7000 is deposited in three different saving bank accounts with annual interest rates 5%, 8% and
Let the amount deposited in each of the three accounts be ₹x, ₹x and ₹y respectively.
Since, the total amount deposited is ₹7,000.
$\therefore x+x+y=7000$
$\Rightarrow 2 x+y=7000$ ...(1)
Total annual Interest is ₹550.
$\therefore \frac{5}{100} x+\frac{8}{100} x+\frac{17}{200} y=550$
$\Rightarrow 26 x+17 y=110000$ ....(2)
The above system of equations can be written in matrix form AX = B as
$\left[\begin{array}{cc}2 & 1 \\ 26 & 17\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}7000 \\ 110000\end{array}\right]$
where, $A=\left[\begin{array}{cc}2 & 1 \\ 26 & 17\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{c}7000 \\ 110000\end{array}\right]$
Now,
$|A|=\left|\begin{array}{cc}2 & 1 \\ 26 & 17\end{array}\right|$
$=34-26$
$=8$
Let $C_{i j}$ be the cofactors of elements $a_{i j}$ in $A=\left[a_{i j}\right] .$ Then,
$C_{11}=(-1)^{1+1} 17=17, \quad C_{12}=(-1)^{1+2} 26=-26$
$C_{21}=(-1)^{2+1} 1=-1, \quad C_{22}=(-1)^{2+2} 2=2$
$\operatorname{adj} A=\left[\begin{array}{cc}17 & -26 \\ -1 & 2\end{array}\right]^{T}$
$=\left[\begin{array}{cc}17 & -1 \\ -26 & 2\end{array}\right]$
$\Rightarrow A^{-1}=\frac{1}{|A|}$ adj $A$
$=\frac{1}{8}\left[\begin{array}{cc}17 & -1 \\ -26 & 2\end{array}\right]$
$X=A^{-1} B$
$\Rightarrow\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{8}\left[\begin{array}{cc}17 & -1 \\ -26 & 2\end{array}\right]\left[\begin{array}{c}7000 \\ 110000\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{8}\left[\begin{array}{c}119000-110000 \\ -182000+220000\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{8}\left[\begin{array}{c}9000 \\ 38000\end{array}\right]$
$\Rightarrow x=\frac{9000}{8}$ and $y=\frac{38000}{8}$
$\therefore x=1125$ and $y=4750$
Hence, the amount deposited in each of the three accounts is ₹1125, ₹1125 and ₹4750.