A tangent line L is drawn at the point (2,-4)

Question:

A tangent line $L$ is drawn at the point $(2,-4)$ on the parabola $y^{2}=8 x$. If the line $L$ is also tangent to the circle $x^{2}+y^{2}=a$, then ' $a$ ' is equal to_______.

Solution:

tangent of $y^{2}=8 x$ is $y=m x+\frac{2}{m}$

$\mathrm{P}(2,-4) \Rightarrow-4=2 \mathrm{~m}+\frac{2}{\mathrm{~m}}$

$\Rightarrow \mathrm{m}+\frac{1}{\mathrm{~m}}=-2 \Rightarrow \mathrm{m}=-1$

$\therefore$ tangent is $\mathrm{y}=-\mathrm{x}-2$

$\Rightarrow x+y+2=0$...........(1)

(1) is also tangent to $x^{2}+y^{2}=a$

So $\frac{2}{\sqrt{2}}=\sqrt{a} \Rightarrow \sqrt{a}=\sqrt{2}$

$\Rightarrow a=2$

Leave a comment