A spaceship in space sweeps stationary interplanetary dust.

Question:

A spaceship in space sweeps stationary interplanetary dust. As a result, its mass increases at a rate $\frac{d M(t)}{d t}=b v^{2}(t)$, where $v(t)$ is its instantaneous velocity. The instantaneous acceleration of the satellite is :

  1. (1) $-b v^{3}(t)$

  2. $-\frac{b v^{3}}{M(t)}$

  3. (3) $-\frac{2 b v^{3}}{M(t)}$

  4. (4) $-\frac{b v^{3}}{2 M(t)}$


Correct Option: , 2

Solution:

(2) From the Newton's second law,

$F=\frac{d p}{d t}=\frac{d(m v)}{d t}=v\left(\frac{d m}{d t}\right)$           ...(1)

We have given, $\frac{d M(t)}{d t}=b v^{2}(t)$           ...(2)

Thrust on the satellite,

$F=-v\left(\frac{d m}{d t}\right)=-v\left(b v^{2}\right)=-b v^{3}$ [Using (i) and (ii)]

$\Rightarrow F=M(t) a=-b v^{3} \Rightarrow a=\frac{-b v^{3}}{M(t)}$

Leave a comment