A solution of the equation $\cos ^{2} x+\sin x+1=0$, lies in the interval
(a) $(-\pi / 4, \pi / 4)$
(b) $(\pi / 4,3 \pi / 4)$
(c) $(3 \pi / 4,5 \pi / 4)$
(d) $(5 \pi / 4,7 \pi / 4)$
(d) $(5 \pi / 4,7 \pi / 4)$
Given:
$\cos ^{2} x+\sin x+1=0$
$\Rightarrow\left(1-\sin ^{2} x\right)+\sin x+1=0$
$\Rightarrow 1-\sin ^{2} x+\sin x+1=0$
$\Rightarrow \sin ^{2} x-\sin x-2=0$
$\Rightarrow \sin ^{2} x-2 \sin x+\sin x-2=0$
$\Rightarrow \sin x(\sin x-2)+1(\sin x-2)=0$
$\Rightarrow(\sin x-2)(\sin x+1)=0$
$\Rightarrow \sin x-2=0$ or $\sin x+1=0$
$\Rightarrow \sin x=2$ or $\sin x=-1$
$\sin x=2$ is not possible.
$\Rightarrow \sin x=-1$
$\therefore \sin x=\sin \frac{3 \pi}{2}$
$\Rightarrow x=n \pi+(-1)^{n} \frac{3 \pi}{2}, \mathrm{n} \in \mathrm{Z}$
The values of
Hence, $x$ lies in $\left(\frac{5 \pi}{4}, \frac{7 \pi}{4}\right)$.