A solution is $0.1 \mathrm{M}$ in $\mathrm{Cl}^{-}$and $0.001 \mathrm{M}$ in $\mathrm{CrO}_{4}^{2-}$.
Solid $\mathrm{AgNO}_{3}$ is gradually added to it
Assuming that the addition does not change in volume and $\mathrm{K}_{\mathrm{sp}}(\mathrm{AgCl})=1.7 \times 10^{-10} \mathrm{M}^{2}$ and $\mathrm{K}_{\mathrm{sp}}\left(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right)=1.9 \times 10^{-12} \mathrm{M}^{3}$
Select correct statement from the following :
Correct Option: , 4
(i) $\left[\mathrm{Ag}^{+}\right]$required to ppt $\mathrm{AgCl}(\mathrm{s})$
$\mathrm{Ksp}=\mathrm{IP}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=1.7 \times 10^{-10}$
$\left[\mathrm{Ag}^{+}\right]=1.7 \times 10^{-9}$
(ii) $\left[\mathrm{Ag}^{+}\right]$required to $\mathrm{ppt} \mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})$
$\mathrm{Ksp}=\mathrm{IP}=[\mathrm{Ag}+]^{2}\left[\mathrm{CrO}_{4}^{-2}\right]=1.9 \times 10^{-12}$
$\left[\mathrm{Ag}^{+}\right]=4.3 \times 10^{-5}$
$\left[\mathrm{Ag}^{+}\right]$required to $\mathrm{ppt} \mathrm{AgCl}$ is low so $\mathrm{AgCl}$ will $\mathrm{ppt}$ $1^{\mathrm{st}}$.