Question:
A solid sphere of radius $R$ carries a charge $(\mathrm{Q}+\mathrm{q})$ distributed uniformly over its volume. A very small point like piece of it of mass $m$ gets detached from the bottom of the sphere and falls down vertically under gravity. This piece carries charge $\mathrm{q}$. If it acquires a speed $\mathrm{v}$ when it has fallen through a vertical height y (see figure), then : (assume the remaining portion to be spherical).
Correct Option: 1
Solution:
$\frac{\mathrm{kQq}}{\mathrm{R}}+\mathrm{mgy}$
$=\frac{\mathrm{kQq}}{\mathrm{R}+\mathrm{y}}+\frac{1}{2} \mathrm{mv}^{2}$
$\mathrm{v}^{2}=2 \mathrm{gy}+\frac{2 \mathrm{kQqy}}{\mathrm{mR}(\mathrm{R}+\mathrm{y})}$