A solid metal cone with base radius 12 cm and height 24 cm is melted to form solid spherical balls of diameter 6 cm each.
Question:
A solid metal cone with base radius 12 cm and height 24 cm is melted to form solid spherical balls of diameter 6 cm each. Find the number of balls formed.
Solution:
Radius of cone = 12 cm
Height of cone = 24 cm
Volume of the metallic cone $=\frac{1}{3} \pi r^{2} h$
$=\frac{1}{3} \pi \times(12)^{2} \times 24$
Radius of spherical ball $=\frac{6}{2} \mathrm{~cm}=3 \mathrm{~cm}$
Volume of each spherical ball $=\frac{4}{3} \pi \mathrm{r}^{3}$
$=\frac{4}{3} \pi \times(3)^{3}$
Number of balls formed $=\frac{\text { Volume of the metallic cone }}{\text { Volume of each spherical ball }}$
$=\frac{\pi \times 12 \times 12 \times 24 \times 3}{3 \times 4 \times \pi \times 3 \times 3 \times 3}$
$=32$