A solid ball is exactly fitted inside

Question:

A solid ball is exactly fitted inside the cubical box of side $a$. The volume of the ball is $\frac{4}{3} \pi a^{3}$.

Solution:

False

Because solid ball is exactly fitted inside the cubical box of side a. So, a is the diameter for . the solid ball.

$\therefore \quad$ Radius of the ball $=\frac{a}{2}$

$\mathrm{SO}$, volume of the ball $=\frac{4}{3} \pi\left(\frac{a}{2}\right)^{3}=\frac{1}{6} \pi a^{3}$

Leave a comment