Question:
A solid ball is exactly fitted inside the cubical box of side $a$. The volume of the ball is $\frac{4}{3} \pi a^{3}$.
Solution:
False
Because solid ball is exactly fitted inside the cubical box of side a. So, a is the diameter for . the solid ball.
$\therefore \quad$ Radius of the ball $=\frac{a}{2}$
$\mathrm{SO}$, volume of the ball $=\frac{4}{3} \pi\left(\frac{a}{2}\right)^{3}=\frac{1}{6} \pi a^{3}$