Question:
A sinusoidal voltage of peak value $250 \mathrm{~V}$ is applied to a series LCR circuit, in which $\mathrm{R}=8 \Omega, \mathrm{L}=24 \mathrm{mH}$ and $\mathrm{C}=60 \mu \mathrm{F}$. The value of power dissipated at resonant condition is ' $\mathrm{x}$ ' $\mathrm{kW}$. The value of $\mathrm{x}$ to the nearest integer is____________
Solution:
At resonance power $(\mathrm{P})$
$\mathrm{P}=\frac{\left(\mathrm{V}_{\mathrm{tms}}\right)^{2}}{\mathrm{R}}$
$P=\frac{(250 / \sqrt{2})^{2}}{8}=3906.25 \mathrm{~W}$
$\approx 4 \mathrm{~kW}$