Question:
A sinusoidal voltage of peak value $250 \mathrm{~V}$ is applied to a series LCR circuit,
in which $\mathrm{R}=8 \Omega, \mathrm{L}=24 \mathrm{mH}$ and $\mathrm{C}=60 \mu \mathrm{F}$. The value of power
dissipated at resonant condition is ' $x$ ' $k W$. The value of $x$ to the nearest integer isĀ
Solution:
At resonance power ( $\mathrm{P}$ )
$P=\frac{\left(V_{r m s}\right)^{2}}{R}$
$P=\frac{(250 / \sqrt{2})^{2}}{8}=3906.25 W$
$\approx 4 \mathrm{~kW}$