A seven digit number is formed using

Question:

A seven digit number is formed using digit $3,3,4,4,4,5,5$. The probability, that number so formed is divisible by 2 , is :

  1. (1) $\frac{6}{7}$

  2. (2) $\frac{4}{7}$

  3. (3) $\frac{3}{7}$

  4. (4) $\frac{1}{7}$


Correct Option: , 3

Solution:

$\mathrm{n}(\mathrm{s})=\frac{7 !}{21321}$

$\mathrm{n}(\mathrm{E})=\frac{6 !}{2 ! 2 ! 2 !}$

$\mathrm{P}(\mathbf{E})=\frac{\mathrm{n}(\mathrm{E})}{\mathrm{n}(\mathrm{S})}=\frac{6 !}{7 !} \times \frac{2 ! 312 !}{2 ! 2 ! 2 !}$

$\frac{1}{7} \times 3=\frac{3}{7}$

Leave a comment