A rubber ball is released from a height of 5 m above the floor.

Question:

A rubber ball is released from a height of $5 \mathrm{~m}$ above the floor. It bounces back repeatedly, always rising to $\frac{81}{100}$ of the height through which it falls. Find the average speed of the ball.

(Take $g=10 \mathrm{~ms}^{-2}$ )

  1. (1) $3.0 \mathrm{~ms}^{-1}$

  2. (2) $3.50 \mathrm{~ms}^{-1}$

  3. (3) $2.0 \mathrm{~ms}^{-1}$

  4. (4) $2.50 \mathrm{~ms}^{-1}$


Correct Option: , 4

Solution:

(4)

$v_{0}=\sqrt{2 g h}$

$v=e \sqrt{2 g h}=\sqrt{2 g h}$

$\Rightarrow e=0.9$

$s=h+2 e^{2} h+2 e^{4} h+\ldots \ldots \ldots$

$t=\sqrt{\frac{2 h}{g}}+2 e \sqrt{\frac{2 h}{g}}+2 e^{2} \sqrt{\frac{2 h}{g}}+\ldots \ldots \ldots . .$

$v_{a v}=\frac{s}{t}=2.5 \mathrm{~m} / \mathrm{s}$

Leave a comment