A rocket is fired vertically with a speed of $5 \mathrm{~km} \mathrm{~s}^{-1}$ from the earth's surface. How far from the earth does the rocket go before returning to the earth? Mass of the earth $=6.0 \times 10^{24} \mathrm{~kg}$; mean radius of the earth $=6.4 \times 10^{6} \mathrm{~m}$; $\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$.
$8 \times 10^{6} \mathrm{~m}$ from the centre of the Earth
Velocity of the rocket, $v=5 \mathrm{~km} / \mathrm{s}=5 \times 10^{3} \mathrm{~m} / \mathrm{s}$
Mass of the Earth, $M_{e}=6.0 \times 10^{24} \mathrm{~kg}$
Radius of the Earth, $R_{e}=6.4 \times 10^{6} \mathrm{~m}$
Height reached by rocket mass, $m=h$
At the surface of the Earth,
Total energy of the rocket $=$ Kinetic energy $+$ Potential energy
$=\frac{1}{2} m v^{2}+\left(\frac{-\mathrm{G} M_{e} m}{R_{e}}\right)$
At highest point $h$,
$v=0$
And, Potential energy $=-\frac{\mathrm{G} M_{e} m}{R_{e}+h}$
Total energy of the rocket $=0+\left(-\frac{\mathrm{G} M_{e} m}{\mathrm{R}_{e}+h}\right)=-\frac{\mathrm{G} M_{e} m}{\mathrm{R}_{e}+h}$
From the law of conservation of energy, we have
Total energy of the rocket at the Earth's surface $=$ Total energy at height $h$
$\frac{1}{2} m v^{2}+\left(-\frac{\mathrm{G} M_{e} m}{R_{e}}\right)=-\frac{\mathrm{G} M_{e} m}{R_{e}+h}$
$\frac{1}{2} v^{2}=\mathrm{GM}_{e}\left(\frac{1}{R_{e}}-\frac{1}{R_{e}+h}\right)$
$=\mathrm{GM}_{e}\left(\frac{R_{e}+h-R_{c}}{R_{c}\left(R_{c}+h\right)}\right)$
$\frac{1}{2} v^{2}=\frac{\mathrm{G} M_{e} h}{R_{e}\left(R_{e}+h\right)} \times \frac{R_{e}}{R_{e}}$
$\frac{1}{2} \times v^{2}=\frac{\mathrm{g} R_{e} h}{R_{c}+h}$
Where $\mathrm{g}=\frac{\mathrm{G} M}{R^{2}}=9.8 \mathrm{~m} / \mathrm{s}^{2}$ (Acceleration due to gravity on the Earth's surface)
$\therefore v^{2}\left(R_{c}+h\right)=2 \mathrm{~g} R h$
$v^{2} R_{e}=h\left(2 \mathrm{~g} R_{e}-v^{2}\right)$
$h=\frac{R_{e} v^{2}}{2 \mathrm{~g} R_{e}-v^{2}}$
$=\frac{6.4 \times 10^{6} \times\left(5 \times 10^{3}\right)^{2}}{2 \times 9.8 \times 6.4 \times 10^{6}-\left(5 \times 10^{3}\right)^{2}}$
$h=\frac{6.4 \times 25 \times 10^{12}}{100.44 \times 10^{6}}=1.6 \times 10^{6} \mathrm{~m}$
Height achieved by the rocket with respect to the centre of the Earth
$=R_{e}+h$
$=6.4 \times 10^{6}+1.6 \times 10^{6}$
$=8.0 \times 10^{6} \mathrm{~m}$