A right circular cylinder and a right circular cone have equal bases and equal heights. If their curved surfaces are in the ratio 8 : 5, determine the ratio of the radius of the base to the height of either of them.
For right circular cylinder, let r1 = r, h1 = h.
Then, curved surface area, $s_{1}$ of cylinder $=2 \pi r_{1} h_{1}=2 \pi r h$ (i)
For right circular cone, let $r_{2}=r, h_{2}=h$
Then, curved surface area, $s_{2}$ of cone $=\pi r_{2} l$ where $l=\sqrt{r_{2}{ }^{2}+h^{2}}=\sqrt{r^{2}+h^{2}}$
$=\pi r \sqrt{r^{2}+h^{2}} \quad \ldots \ldots .(i i)$
Divide (i) and (ii),
$\frac{s_{1}}{s_{2}}=\frac{2 \pi r h}{\pi r \sqrt{r^{2}+h^{2}}}$
$\frac{8}{5}=\frac{2 h}{\sqrt{r^{2}+h^{2}}}\left[\frac{s_{1}}{s_{2}}=\frac{8}{5}\right]$
$\frac{64}{25}=\frac{4 h^{2}}{r^{2}+h^{2}} \quad$ [Squaring]
$64 r^{2}+64 h^{2}=100 h^{2}$
$64 r^{2}=36 h^{2}$
$16 r^{2}=9 h^{2}$
\frac{r^{2}}{h^{2}}=\frac{9}{16}
$\frac{r}{h}=\frac{3}{4}$
$\therefore r: h=3: 4$