A right angled triangle with sides 3 cm and 4 cm is revolved around its hypotenuse. Find the volume of the double cone thus generated.
The double cone so formed is as in figure.
Hypotenuse AC
$=\sqrt{3^{2}+4^{2}}$
$=5 \mathrm{~cm} .$
Area of $=\frac{1}{3} \times \frac{22}{7} \times \frac{12}{5} \times \frac{12}{5} \times 5$
$=\frac{1056}{35}$
$=30 \frac{6}{35}$
$\triangle A B C=\frac{1}{2} \times A B \times A C$
$=\frac{1}{2} \times A C \times O B$
$=\frac{1}{2} \times 4 \times 3$
$=\frac{1}{2} \times 5 \times O B$
$=6$
$\frac{1}{2} \times 3 \times 4=\frac{1}{2} \times 5 \times O B$
$O B=\frac{12}{5}$
Volume of double cone = volume of cone 1 + cone 2
$=\frac{1}{3} \pi r^{2} h_{1}+\frac{1}{3} \pi r^{2} h_{2}$
$=\frac{1}{3} \pi r^{2}\left(h_{1}+h_{2}\right)$
$=\frac{1}{3} \pi r^{2}(O A+O C)$
$=\frac{1}{3} \times \frac{22}{7} \times \frac{12}{5} \times \frac{12}{5} \times 5$
$=\frac{1056}{35}$
$=30 \frac{6}{35} \mathrm{~cm}^{2}$