A ray of light through (2,1) is reflected at a point P on the y-axis and then passes through the point (5, 3).
A ray of light through (2,1) is reflected at a point P on the y-axis and then passes through the point (5, 3). If this reflected ray is the directrix of an
ellipse with eccentricity $\frac{1}{3}$ and the distance of the nearer focus from this directrix is $\frac{8}{\sqrt{53}}$, then the equation of the other directrix can be:
Correct Option: , 3
Equation of reflected Ray
$y-1=\frac{2}{7}(x+2)$
$7 y-7=2 x+4$
$2 x-7 y+11=0$
Let the equation of other directrix is
$2 x-7 y+\lambda$
Distance of directrix from Focub
$\frac{a}{e}-a e=\frac{8}{\sqrt{53}}$
$3 a-\frac{a}{3}=\frac{8}{\sqrt{53}}$ or $a=\frac{3}{\sqrt{53}}$
Distance from other focus $\frac{\mathrm{a}}{\mathrm{e}}+\mathrm{ae}$
$3 a+\frac{a}{3}=\frac{10 a}{3}=\frac{10}{3} \times \frac{3}{\sqrt{53}}=\frac{10}{\sqrt{53}}$
Distance between two directrix $=\frac{2 a}{e}$
$=2 \times 3 \times \frac{3}{\sqrt{53}}=\frac{18}{\sqrt{53}}$
$\left|\frac{\lambda-11}{\sqrt{53}}\right|=\frac{18}{\sqrt{53}}$
$\lambda-11=18$ or $-18$
$\lambda=29$ or $-7$
$2 x-7 y-7=0$ or $2 x-7 y+29=0$