A ray of light passing through the point (1, 2) reflects on theĀ x-axis at point A and the reflected ray passes through the point (5, 3). Find the coordinates of A.
Let the coordinates of point A be (a, 0).
Draw a line (AL) perpendicular to theĀ x-axis.
We know that angle of incidence is equal to angle of reflection. Hence, let
$\angle B A L=\angle C A L=\Phi$
Let $\angle \mathrm{CAX}=\theta$
$\therefore \angle \mathrm{OAB}=180^{\circ}-(\theta+2 \Phi)=180^{\circ}-\left[\theta+2\left(90^{\circ}-\theta\right)\right]$
$=180^{\circ}-\theta-180^{\circ}+2 \theta$
$=\theta$
$\therefore \angle B A X=180^{\circ}-\theta$
Now, slope of line $\mathrm{AC}=\frac{3-0}{5-a}$
$\Rightarrow \tan \theta=\frac{3}{5-a}$ $\ldots(1)$
Slope of line $\mathrm{AB}=\frac{2-0}{1-a}$
$\Rightarrow \tan \left(180^{\circ}-\theta\right)=\frac{2}{1-a}$
$\Rightarrow-\tan \theta=\frac{2}{1-a}$
$\Rightarrow \tan \theta=\frac{2}{a-1}$ $\cdots(2)$
From equations (1) and (2), we obtain
$\frac{3}{5-a}=\frac{2}{a-1}$
$\Rightarrow 3 a-3=10-2 a$
$\Rightarrow a=\frac{13}{5}$
Thus, the coordinates of point $\mathrm{A}$ are $\left(\frac{13}{5}, 0\right)$.