A ray of light passing through a prism

Question:

A ray of light passing through a prism $(\mu=\sqrt{3})$ suffers minimum deviation. It is found that the angle of incidence is double the angle of refraction within the prism. Then, the angle of prism is (in degrees)

Solution:

At minimum deviation $r_{1}=r_{2}=\frac{A}{2}$

Also given $\mathrm{i}=2 \mathrm{r}_{1}=\mathrm{A}$

Now $1 \cdot \sin \mathrm{i}=\sqrt{3} \sin \mathrm{r}_{1}$

$1 \sin A=\sqrt{3} \sin \frac{A}{2}$

$\Rightarrow \quad 2 \sin \frac{A}{2} \cos \frac{A}{2}=\sqrt{3} \sin \frac{A}{2}$

$\Rightarrow \quad \cos \frac{A}{2}=\frac{\sqrt{3}}{2} \Rightarrow \frac{A}{2}=30^{\circ}$

$\Rightarrow \quad A=60^{\circ}$

 

Leave a comment