Question:
A railway train is travelling on a circular curve of 1500 metres radius at the rate of 66 km/hr. Through what angle has it turned in 10 seconds?
Solution:
Time = 10 seconds
Speed $=66 \mathrm{~km} / \mathrm{h}=\frac{66 \times 1000}{3600} \mathrm{~m} / \mathrm{s}$
We know,
Speed $=\frac{\text { Distance }}{\text { Time }}$
$\Rightarrow \frac{66 \times 1000}{3600}=\frac{\text { Distance }}{\text { Time }}$
$\Rightarrow$ Distance $=\frac{66 \times 1000}{3600} \times 10=\frac{1100}{6} \mathrm{~m}$
Now,
Radius of the curve = 1500 m
$\therefore \theta=\frac{\text { Arc }}{\text { Radius }}$
$=\frac{\frac{1100}{6}}{1500}$
$=\frac{1100}{1500 \times 6}=\frac{11}{90}$ radian
So, the train will turn $\frac{11}{90}$ radian in 10 seconds.