Question:
A quadrilateral ABCD is drawn to circumscribe a circle. Prove that sums of opposite sides are equal.
Solution:
We know that the tangents drawn from an external point to a circle are equal.
$\therefore A P=A S \ldots \ldots(i) \quad[$ tangents from $A]$
$B P=B Q \ldots \ldots \ldots(i i) \quad[$ tangents from $B]$
$C R=C Q \ldots \ldots \ldots \ldots$ (iii) [tangents from $C]$
$D R=D S \ldots \ldots \ldots . .(i v) \quad[$ tangents from $D]$
$\therefore A B+C D=(A P+B P)+(C R+D R)$
$=(A S+B Q)+(C Q+D S) \quad$ [using $(i),(i i),(i i i)$ and $(i v)]$
$=(A S+D S)+(B Q+C Q)$
$=(A D+B C)$
Hence, $(A B+C D)=(A D+B C)$