Here, $b$ is any positive integer $a=3, b=3 q+r$ for $0 \leq r<3$
So, this must be in the form $3 q, 3 q+1$ or $3 q+2$.
$\begin{array}{lll}\text { Now, } & (3 q)^{2}=9 q^{2}=3 m & {\left[\text { here, } m=3 q^{2}\right]}\end{array}$
and $\quad(3 q+1)^{2}=9 q^{2}+6 q+1$'
$=3\left(3 q^{2}+2 q\right)+1=3 m+1 \quad$ [where, $\left.m=3 q^{2}+2 q\right]$
Also,
$(3 q+2)^{2}=9 q^{2}+12 q+4$
$=9 q^{2}+12 q+3+1$
$=3\left(3 q^{2}+4 q+1\right)+1$
$=3 m+1$ [here, $\left.m=3 q^{2}+4 q+1\right]$
Hence, square of a positive integer is of the form $3 \mathrm{~g}+1$ is always in the form $3 \mathrm{~m}+1$ for some integer $\mathrm{m}$.