Question:
A point on the straight line, $3 x+5 y=15$ which is equidistant from the coordinate axes will lie only in :
Correct Option: , 3
Solution:
A point which is equidistant from both the axes lies on
either $y=x$ and $y=-x$.
Since, point lies on the line $3 x+5 y=15$
Then the required point
$3 x+5 y=15$
$\frac{x+y=0}{x=-\frac{15}{2}}$
$y=\frac{15}{2} \Rightarrow(x, y)=\left(-\frac{15}{2}, \frac{15}{2}\right)\left\{2^{\text {nd }}\right.$ quadrant $\}$
or $3 x+5 y=15$
$\frac{x-y=0}{x=\frac{15}{8}}$
$y=\frac{15}{8} \Rightarrow(x, y)=\left(\frac{15}{8}, \frac{15}{8}\right)\left\{1^{\text {st }}\right.$ quadrant $\}$
Hence, the required point lies in $1^{\text {st }}$ and $2^{\text {nd }}$ quadrant.