A plane passes through the points A (1,2,3),

Question:

A plane passes through the points $\mathrm{A}(1,2,3), \mathrm{B}(2,3,1)$ and $\mathrm{C}(2,4,2)$. If $\mathrm{O}$ is the origin and $\mathrm{P}$ is $(2,-1,1)$,

  1. $\sqrt{\frac{2}{7}}$

  2. $\sqrt{\frac{2}{3}}$

  3. $\sqrt{\frac{2}{11}}$

  4. $\sqrt{\frac{2}{5}}$


Correct Option: , 3

Solution:

Normal to plane $\overrightarrow{\mathrm{n}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 1 & 1 & -2 \\ 0 & 1 & 1\end{array}\right|$

$=3 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}$

$\overrightarrow{\mathrm{OP}}=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}$

$\cos \theta=\frac{6+1+1}{\sqrt{6} \sqrt{11}}=\frac{8}{\sqrt{66}} \Rightarrow \sin \theta=\sqrt{\frac{2}{66}}$

$\therefore$ Projection of $\overrightarrow{\mathrm{OP}}$ on plane $=|\overrightarrow{\mathrm{OP}}| \sin \theta$

$=\sqrt{\frac{2}{11}}$

option (3)

Leave a comment