A plane passes through the points $\mathrm{A}(1,2,3), \mathrm{B}(2,3,1)$ and $\mathrm{C}(2,4,2)$. If $\mathrm{O}$ is the origin and $\mathrm{P}$ is $(2,-1,1)$, then the projection of $\overrightarrow{O P}$ on this plane is of length:
Correct Option: , 3
$\mathrm{A}(1,2,3), \mathrm{B}(2,3,1), \mathrm{C}(2,4,2), \mathrm{O}(0,0,0)$
Equation of plane passing through $A, B, C$ will be
$\left|\begin{array}{lll}x-1 & y-2 & z-3 \\ 2-1 & 3-2 & 1-3 \\ 2-1 & 4-2 & 2-3\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}x-1 & y-2 & z-3 \\ 1 & 1 & -2 \\ 1 & 2 & -1\end{array}\right|=0$
$\Rightarrow(x-1)(-1+4)-(y-2)(-1+2)+(z-3)(2-1)=0$
$\Rightarrow(x-1)(3)-(y-2)(1)+(z-3)(1)=0$
$\Rightarrow 3 x-3-y+2+z-3=0$
$\Rightarrow 3 x-u+z-4=0$. is the reauired plane.
Now, given $O(0,0,0) \& P(2,-1,1)$
Plane is $3 x-y+z-4=0$
$\mathrm{O}^{\prime} \& \mathrm{P}^{\prime}$ are foot of perpendiculars.
for $\mathrm{O}^{\prime}$
$\frac{x-0}{3}=\frac{y-0}{-1}=\frac{z-0}{1}=\frac{-(0-0+0-4)}{9+1+1}$
$\frac{x}{3}=\frac{y}{-1}=\frac{z}{1}=\frac{4}{11}$
$\Rightarrow O^{\prime}\left(\frac{12}{11}, \frac{-4}{11}, \frac{4}{11}\right)$
for $\mathrm{P}^{\prime}$
$\frac{x-2}{3}=\frac{y+1}{-1}=\frac{z-1}{1}=\frac{-(3(2)-(-1)+1-4)}{9+1+1}$
$\frac{x-2}{3}=\frac{y+1}{-1}=\frac{z-1}{1}=\left(\frac{-4}{11}\right)$
$P^{\prime}\left(\frac{-12}{11}+2, \frac{4}{11}-1, \frac{-4}{11}+1\right)$
$\Rightarrow P^{\prime}\left(\frac{10}{11}, \frac{-7}{11}, \frac{7}{11}\right)$
$O^{\prime} P^{\prime}=\sqrt{\left(\frac{10}{11}-\frac{12}{11}\right)^{2}+\left(\frac{-7}{11}+\frac{4}{11}\right)^{2}+\left(\frac{7}{11}-\frac{4}{11}\right)^{2}}$
$\Rightarrow O^{\prime} P^{\prime}=\frac{1}{11} \sqrt{4+9+9}$
$\Rightarrow \quad O^{\prime} P^{\prime}=\frac{\sqrt{22}}{11}$
$\Rightarrow \quad O^{\prime} P^{\prime}=\frac{\sqrt{2} \times \sqrt{11}}{11}$
$\Rightarrow O^{\prime} P^{\prime}=\sqrt{\frac{2}{11}}$