A plane electromagnetic wave of frequency $500 \mathrm{MHz}$ is travelling in vacuum along $\mathrm{y}$-direction. At a particular point in space and time, $\overrightarrow{\mathrm{B}}=8.0 \times 10^{-8} \hat{\mathrm{z}} \mathrm{T}$. The value of electric field at this point is :
$\left(\right.$ speed of light $=3 \times 10^{8} \mathrm{~ms}^{-1}$ )
$\hat{\mathrm{x}}, \hat{\mathrm{y}}, \hat{\mathrm{z}}$ are unit vectors along $\mathrm{x}, \mathrm{y}$ and $\mathrm{z}$ direction.
Correct Option: 1,
$f=5 \times 10^{8} \mathrm{~Hz}$
EM wave is travelling towards $+\hat{\mathrm{j}}$
$\overrightarrow{\mathrm{B}}=8.0 \times 10^{-8} \hat{\mathrm{z}} \mathrm{T}$
$\overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{B}} \times \overrightarrow{\mathrm{C}}=\left(8 \times 10^{-8} \hat{\mathrm{z}}\right) \times\left(3 \times 10^{8} \hat{\mathrm{y}}\right)$
$=-24 \hat{\mathrm{x}} \mathrm{V} / \mathrm{m}$