A plane electromagnetic wave of frequency

Question:

A plane electromagnetic wave of frequency $100 \mathrm{MHz}$ is travelling in vacuum along the $x-$ direction. At a particular point in space and time, $\overrightarrow{\mathrm{B}}=2.0 \times 10^{-\mathrm{s}} \hat{\mathrm{k}} \mathrm{T} \cdot$ (where, $\hat{\mathrm{k}}$ is unit vector along z-direction) What is $\overrightarrow{\mathrm{E}}$ at this point?

  1. $0.6 \hat{\mathrm{j}} \mathrm{V} / \mathrm{m}$

  2. $6.0 \hat{\mathrm{k}} \mathrm{V} / \mathrm{m}$

  3. $6.0 \hat{j} \mathrm{~V} / \mathrm{m}$

  4. $0.6 \hat{\mathrm{k}} \mathrm{V} / \mathrm{m}$


Correct Option: , 3

Solution:

$E=B C=6$

(Dir. of wave) $\|(\overrightarrow{\mathrm{E}} \times \overrightarrow{\mathrm{B}})$

$\hat{\mathrm{i}}=\hat{\mathrm{j}} \times \hat{\mathrm{k}}$

$\overrightarrow{\mathrm{E}}=6 \hat{\mathrm{j}} \mathrm{V} / \mathrm{m}$

Leave a comment