A person observed the angle of elevation of the top of a tower as 30°. He walked 50 m towards the foot of the tower along level ground and found the angle of elevation of the top of the tower as 60°. Find the height of the tower.
Let be the tower of height. And person makes an angle of elevation of top of tower is 30°, he walks m towards the foot of tower then makes an angle of elevation 60°
Let $B C=x, C D=50$, and $\angle A C B=60^{\circ}, \angle A D B=30^{\circ}$
Now we have to find height of tower.
We have the corresponding figure as follows
So we use trigonometric ratios.
In a triangle ABC,
$\Rightarrow \quad \tan C=\frac{A B}{B C}$
$\Rightarrow \quad \tan 60^{\circ}=\frac{h}{x}$
$\Rightarrow \quad \sqrt{3}=\frac{h}{x}$
$\Rightarrow \quad x=\frac{h}{\sqrt{3}}$
Again in a triangle,
$\Rightarrow \quad \tan D=\frac{A B}{B C+C D}$
$\Rightarrow \quad \tan 30^{\circ}=\frac{h}{x+50}$
$\Rightarrow \quad \frac{1}{\sqrt{3}}=\frac{h}{x+50}$
$\Rightarrow \quad \sqrt{3} h=x+50$
$\Rightarrow \sqrt{3} h=\frac{h}{\sqrt{3}}+50$
$\Rightarrow \sqrt{3} h=\frac{h}{\sqrt{3}}+50$
$\Rightarrow 3 h=h+50 \sqrt{3}$
$\Rightarrow 2 h=50 \sqrt{3}$
$\Rightarrow h=25 \sqrt{3}$
$\Rightarrow h=25 \times 1.73$
$\Rightarrow h=43.25$
Hence the height of tower is $43.25 \mathrm{~m}$.