A particle of mass m moves in a circular orbit

Question:

A particle of mass $m$ moves in a circular orbit

under the central potential field, $U(\mathrm{r})=\frac{-\mathrm{C}}{\mathrm{r}}$,

where $\mathrm{C}$ is a positive constant.

The correct radius - velocity graph of the particle's motion is :

 


Correct Option:

Solution:

$\mathrm{U}=-\frac{\mathrm{C}}{\mathrm{r}}$

$\mathrm{F}=-\frac{\mathrm{dU}}{\mathrm{dr}}=-\frac{\mathrm{C}}{\mathrm{r}^{2}}$

$|\mathrm{F}|=\frac{m v^{2}}{r}$

$\frac{\mathrm{C}}{\mathrm{r}^{2}}=\frac{\mathrm{mv}^{2}}{\mathrm{r}}$

$\mathrm{v}^{2} \propto \frac{1}{\mathrm{r}}$

Leave a comment