A particle executes S.H.M. with amplitude 'a' and time period

Question:

A particle executes S.H.M. with amplitude 'a' and time period $V$. The displacement of the particle when its speed is half of maximum

speed is $\frac{\sqrt{x} a}{2}$. The value of $x$ is

 

Solution:

$V=\omega \sqrt{\mathrm{A}^{2}-\mathrm{x}^{2}}$

$\mathrm{V}_{\max }=\mathrm{A} \omega$

$\frac{\mathrm{A} \omega}{2}=\omega \sqrt{\mathrm{A}^{2}-\mathrm{x}^{2}}$

$\frac{\mathrm{A}^{2}}{4}=\mathrm{A}^{2}-\mathrm{x}^{2}$

$x^{2}=\frac{3 A^{2}}{4}$

$x=\frac{\sqrt{3}}{2} \mathrm{~A}$

 

Leave a comment