A park in the shape of a quadrilateral ABCD, has angle C = 90°, AB = 9 m, BC = 12 m, CD = 5 m, AD = 8 m. How much area does it occupy?
Given sides of a quadrilateral are AB = 9 m, BC = 12 m, CD = 5 m, DA = 8 m.
Let us join BD
In triangle BCD, apply Pythagoras theorem
$B D^{2}=B C^{2}+C D^{2}$
$B D^{2}=12^{2}+5^{2}$
BD = 13 m
Area of triangle BCD = 1/2 × BC × CD
= 1/2 × 12 × 5
$=30 \mathrm{~m}^{2}$
Now, in triangle ABD
Perimeter = 2s = 9 m + 8m + 13m
s = 15 m
By using Heron's Formula,
Area of the triangle $\mathrm{ABD}=\sqrt{\mathrm{s} \times(\mathrm{s}-\mathrm{a}) \times(\mathrm{s}-\mathrm{b}) \times(\mathrm{s}-\mathrm{c})}$
$=\sqrt{15 \times(15-9) \times(15-8) \times(15-13)}$
$=35.49 \mathrm{~m}^{2}$
Area of quadrilateral ABCD = Area of triangle ABD + Area of triangle BCD
$=(35.496+30) m^{2}$
$=65.5 \mathrm{~m}^{2}$