Question:
A nucleus $A$, with a finite de-broglie wavelength $\lambda_{A}$, undergoes spontaneous fission into two nuclei $\mathrm{B}$ and $\mathrm{C}$ of equal mass. B flies in the same direction as that of A, while C flies in the opposite direction with a velocity equal to half of that of $\mathrm{B}$. the de-Broglie wavelengths $\lambda_{\mathrm{B}}$ and $\lambda_{\mathrm{C}}$ of $\mathrm{B}$ and $\mathrm{C}$ are respectively :
Correct Option: , 4
Solution:
(4) $\quad \vec{P}=\vec{P}+\vec{P}_{2}$
or $\vec{P}=\overrightarrow{P^{\prime}}-\frac{\overrightarrow{P^{\prime}}}{2}$
$=\frac{\vec{P}}{2}$
As $\lambda=\frac{h}{P}$
$\Rightarrow \lambda_{B}=\frac{\lambda_{A}}{2}$ and $\lambda_{\mathrm{C}}=\lambda_{\mathrm{A}}$