Question:
A natural number has prime factorization given by $n=2^{x} 3^{y} 5^{z}$, where $y$ and $z$ are such that $y+z=5$ and $y^{-1}+z^{-1}=\frac{5}{6}, y>z$. Then the number of odd divisors of $\mathrm{n}$, including 1 , is :
Correct Option: , 4
Solution:
$y+z=5$
$\frac{1}{y}+\frac{1}{z}=\frac{5}{6}$$y>z$
$\Rightarrow y=3, z=2$
$\Rightarrow \mathrm{n}=2^{\mathrm{x}} \cdot 3^{3} \cdot 5^{2}=(2.2 .2 \ldots)$
Number of odd divisors $=4 \times 3=12$