A metallic spherical shell of internal and external diameters 4 cm and 8 cm, respectively is melted and recast into the form a cone of base diameter 8
cm. The height of the cone is
(a) 12 cm
(b) 14 cm
(c) 15 cm
(d) 18 cm
(b) Given, internal diameter of spherical shell = 4 cm
and external diameter of shell = 8 cm
$\therefore$ Internal radius of spherical shell, $r_{1}=\frac{4}{2} \mathrm{~cm}=2 \mathrm{~cm}$ " $\quad[\because$ diameter $=2 \times$ radius $]$
and external radius of shell, $r_{2}=\frac{8}{2}=4 \mathrm{~cm}$ $[\because$ diameter $=2 \times$ radius $]$
Now, volume of the spherical shell $=\frac{4}{3} \pi\left[r_{2}^{3}-r_{1}^{3}\right]$
$\left[\because\right.$ volume of the spherical shell $=\frac{4}{3} \pi\left\{(\text { external radius })^{3}-\right.$ (internal radius) $\left.\left.^{3}\right\}\right]$
$=\frac{4}{3} \pi\left(4^{3}-2^{3}\right)$
$=\frac{4}{3} \pi(64-8)$
$=\frac{224}{3} \pi \mathrm{cm}^{3}$
Let height of the cone $=h \mathrm{~cm}$
Diameter of the base of cone $=8 \mathrm{~cm}$
$\therefore$ Radius of the base of cone $=\frac{8}{2}=4 \mathrm{~cm} \quad$ [\because\mathrm{ diameter } = 2 \times \text { radius } ]
According to the question,
Volume of cone $=$ Volume of spherical shell
$\Rightarrow \quad \frac{1}{3} \pi(4)^{2} h=\frac{224}{3} \pi \Rightarrow h=\frac{224}{16}=14 \mathrm{~cm}$
$\left[\because\right.$ volume of cone $=\frac{1}{3} \times \pi \times(\text { radius })^{2} \times($ height $\left.)\right]$
Hence, the height of the cone is $14 \mathrm{~cm}$.