A metallic sphere of radius 10.5 cm is melted and thus recast into small cones, each of radius 3.5 cm and height 3 cm. Find how many cones are obtained.
The radius of sphere r = 10.5 cm
The volume of sphere
$=\frac{4}{3} \pi r^{3}$
$=\frac{4}{3} \pi \times(10.5)^{3}$
$=\frac{4}{3} \pi\left(\frac{21}{2}\right)^{3}$
$=\frac{4}{3} \pi \frac{441 \times 21}{8}$
$=\frac{441 \times 21}{6} \pi(\mathrm{cm})^{3}$
Let n be the number of cones obtained when the sphere is recast in to small cones, each of radius 3.5 and height 3 cm.
Then, volume of sphere = n × volume of cone
$\frac{441 \times 21}{6}=n \times \frac{1}{3} \times \frac{7}{2} \times \frac{7}{2} \times 3$
$441 \times 21=\frac{n \times 49 \times 3}{2}$
$n=\frac{441 \times 21 \times 2}{49 \times 3}=126$
$n=126$
Hence, the no. of cones = 126