Question:
A metallic sphere 1 dm in diameter is beaten into a circular sheet of uniform thickness equal to 1 mm. Find the radius of the sheet.
Solution:
Radius of metallic sphere $r=\frac{10}{2} \mathrm{~cm}$
Thickness of circular sheet
$h=1 \mathrm{~mm}$
$=\frac{1}{10} \mathrm{~cm}$
Let r1 be the radius of sheet.
Therefore,
Volume of circular sheet = volume of metallic sphere
$r_{1}^{2} \times \frac{1}{10}=\frac{4}{3} \times(5)^{3}$
$r_{1}^{2}=\frac{4 \times 125 \times 10}{3}$
$=\frac{5000}{3}$
$r_{1}=\sqrt{\frac{5000}{3}}$
$r_{1}=40.8 \mathrm{~cm}$
Hence, the radius of circular sheet = 40.8 cm