A metallic cylinder of radius 8 cm and height 2 cm is melted and converted into a right circular cone of height 6 cm.
Question:
A metallic cylinder of radius 8 cm and height 2 cm is melted and converted into a right circular cone of height 6 cm. The radius of the base of this cone is
(a) 4 cm
(b) 5 cm
(c) 6 cm
(d) 8 cm
Solution:
(d) 8 cm
Radius of the cylinder = 8 cm
Height of the cylinder = 2 cm
Height of the cone = 6 cm
Volume of the cylinder = Volume of the cone
Therefore,
$\pi \times 8 \times 8 \times 2=\frac{1}{3} \pi \times r^{2} \times 6$
$\Rightarrow 128=r^{2} \times 2$
$\Rightarrow r^{2}=\frac{128}{2}$
$\Rightarrow r^{2}=64$
$\Rightarrow r=8 \mathrm{~cm}$
Hence, the radius of the base of the cone is 8 cm.