Question.
A median of a triangle divides it into two triangles of equal areas. Verify this result for ABC whose vertices are A(4, – 6), B(3,–2) and C(5,2)
A median of a triangle divides it into two triangles of equal areas. Verify this result for ABC whose vertices are A(4, – 6), B(3,–2) and C(5,2)
Solution:
Here, the vertices of the triangles are A(4, –6), B(3, –2) and C(5, 2).
Let D be the midpoint of BC.
$\therefore \quad$ The coordinates of the mid point D are
$\therefore \quad$ The coordinates of the mid point $D$ are
$\left\{\frac{\mathbf{3}+\mathbf{5}}{\mathbf{2}}, \frac{-\mathbf{2}+\mathbf{2}}{\mathbf{2}}\right\}$ or $(4,0)$
Since, $A D$ divides the triangle $A B C$ into two parts i.e., $\triangle A B D$ and $\triangle A C D$,
Now, $\operatorname{ar}(\Delta \mathrm{ABD})$
$=\frac{1}{2}[4\{(-2)-0\}+3(0+6)+4(-6+2)]$
$=\frac{1}{2}[(-8)+18+(-16)]=\frac{1}{2}(-6)=-3$ sq. units
$=3$ sq. units(numerically) .....(1)
$\operatorname{ar}(\Delta \mathrm{ADC})=\frac{\mathbf{1}}{\mathbf{2}}[4(0-2)+4(2+6)+5(-6-0)]$
$=\frac{\mathbf{1}}{\mathbf{2}}[-8+32-30]=\frac{\mathbf{1}}{\mathbf{2}}[-6]=-3$ sq.units
$=3$ sq.units (numerically) ....(2)
From (1) and (2)
$\operatorname{ar}(\Delta \mathrm{ABD})=\operatorname{ar}(\Delta \mathrm{ADC})$
i.e., A median divides the triangle into two triangles of equal areas.
Here, the vertices of the triangles are A(4, –6), B(3, –2) and C(5, 2).
Let D be the midpoint of BC.
$\therefore \quad$ The coordinates of the mid point D are
$\therefore \quad$ The coordinates of the mid point $D$ are
$\left\{\frac{\mathbf{3}+\mathbf{5}}{\mathbf{2}}, \frac{-\mathbf{2}+\mathbf{2}}{\mathbf{2}}\right\}$ or $(4,0)$
Since, $A D$ divides the triangle $A B C$ into two parts i.e., $\triangle A B D$ and $\triangle A C D$,
Now, $\operatorname{ar}(\Delta \mathrm{ABD})$
$=\frac{1}{2}[4\{(-2)-0\}+3(0+6)+4(-6+2)]$
$=\frac{1}{2}[(-8)+18+(-16)]=\frac{1}{2}(-6)=-3$ sq. units
$=3$ sq. units(numerically) .....(1)
$\operatorname{ar}(\Delta \mathrm{ADC})=\frac{\mathbf{1}}{\mathbf{2}}[4(0-2)+4(2+6)+5(-6-0)]$
$=\frac{\mathbf{1}}{\mathbf{2}}[-8+32-30]=\frac{\mathbf{1}}{\mathbf{2}}[-6]=-3$ sq.units
$=3$ sq.units (numerically) ....(2)
From (1) and (2)
$\operatorname{ar}(\Delta \mathrm{ABD})=\operatorname{ar}(\Delta \mathrm{ADC})$
i.e., A median divides the triangle into two triangles of equal areas.